首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21368篇
  免费   4483篇
  国内免费   5431篇
测绘学   881篇
大气科学   1916篇
地球物理   5517篇
地质学   14189篇
海洋学   2842篇
天文学   53篇
综合类   1383篇
自然地理   4501篇
  2024年   42篇
  2023年   267篇
  2022年   681篇
  2021年   959篇
  2020年   985篇
  2019年   1035篇
  2018年   992篇
  2017年   928篇
  2016年   993篇
  2015年   1128篇
  2014年   1447篇
  2013年   1728篇
  2012年   1382篇
  2011年   1562篇
  2010年   1417篇
  2009年   1470篇
  2008年   1488篇
  2007年   1537篇
  2006年   1652篇
  2005年   1309篇
  2004年   1250篇
  2003年   1089篇
  2002年   994篇
  2001年   822篇
  2000年   679篇
  1999年   564篇
  1998年   498篇
  1997年   434篇
  1996年   346篇
  1995年   329篇
  1994年   297篇
  1993年   231篇
  1992年   181篇
  1991年   137篇
  1990年   92篇
  1989年   101篇
  1988年   61篇
  1987年   42篇
  1986年   28篇
  1985年   32篇
  1984年   18篇
  1983年   13篇
  1982年   5篇
  1981年   12篇
  1980年   6篇
  1979年   2篇
  1978年   10篇
  1976年   1篇
  1973年   3篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Buried pipelines are often constructed in seismic and other geohazard areas, where severe ground deformations may induce severe strains in the pipeline. Calculation of those strains is essential for assessing pipeline integrity, and therefore, the development of efficient models accounting for soil‐pipe interaction is required. The present paper is aiming at developing efficient tools for calculating ground‐induced deformation on buried pipelines, often triggered by earthquake action, in the form of fault rupture, liquefaction‐induced lateral spreading, soil subsidence, or landslide. Soil‐pipe interaction is investigated by using advanced numerical tools, which employ solid elements for the soil, shell elements for the pipe, and account for soil‐pipe interaction, supported by large‐scale experiments. Soil‐pipe interaction in axial and transverse directions is evaluated first, using results from special‐purpose experiments and finite element simulations. The comparison between experimental and numerical results offers valuable information on key material parameters, necessary for accurate simulation of soil‐pipe interaction. Furthermore, reference is made to relevant provisions of design recommendations. Using the finite element models, calibrated from these experiments, pipeline performance at seismic‐fault crossings is analyzed, emphasizing on soil‐pipe interaction effects in the axial direction. The second part refers to full‐scale experiments, performed on a unique testing device. These experiments are modeled with the finite element tools to verify their efficiency in simulating soil‐pipe response under landslide or strike‐slip fault movement. The large‐scale experimental results compare very well with the numerical predictions, verifying the capability of the finite element models for accurate prediction of pipeline response under permanent earthquake‐induced ground deformations.  相似文献   
52.
Soil erosion in the Anthropocene: Research needs   总被引:6,自引:0,他引:6       下载免费PDF全文
Soil erosion is a geomorphological and, at the same time, a land degradation process that may cause environmental and property damage, loss of livelihoods and services as well as social and economic disruption. Erosion not only lowers soil quality on‐site, but causes also significant sediment‐related problems off‐site. Given the large number of research papers on this topic, one might therefore conclude that we know now almost everything about soil erosion and its control so that little new knowledge can be added. This conclusion can be refuted by pointing to some major research gaps. There is a need for more research attention to (1) improved understanding of both natural and anthropogenic soil erosion processes and their interactions, (2) scaling up soil erosion processes and rates in space and time, and (3) innovative techniques and strategies to prevent soil erosion or reduce erosion rates. This is illustrated with various case studies from around the world. If future research addresses these research gaps, we will (1) better understand processes and their interactions operating at a range of spatial and temporal scales, predict their rates as well as their on‐site and off‐site impacts, which is academically spoken rewarding but also crucial for better targeting erosion control measures, and (2) we will be in a better position to select the most appropriate and effective soil erosion control techniques and strategies which are highly necessary for a sustainable use of soils in the Anthropocene. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
53.
To assess recharge through floodwater spreading, three wells, approx. 30 m deep, were dug in a 35-year-old basin in southern Iran. Hydraulic parameters of the layers were measured. One well was equipped with pre-calibrated time domain reflectometry (TDR) sensors. The soil moisture was measured continuously before and after events. Rainfall, ponding depth and the duration of the flooding events were also measured. Recharge was assessed by the soil water balance method, and by calibrated (inverse solution) HYDRUS-1D. The results show that the 15 wetting front was interrupted at a layer with fine soil accumulation over a coarse layer at the depth of approx. 4 m. This seemed to occur due to fingering flow. Estimation of recharge by the soil water balance and modelling approaches showed a downward water flux of 55 and 57% of impounded floodwater, respectively.  相似文献   
54.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   
55.
Many researchers have studied the influence of rainfall patterns on soil water movement processes using rainfall simulation experiments. However, less attention has been paid to the influence under natural condition. In this paper, rainfall, soil water content (SWC), and soil temperature at 10‐, 20‐, 30‐, 40‐, and 50‐cm depths were simultaneously monitored at 1‐min intervals to measure the variation in SWC (SWCv) in response to rainfall under different rainfall patterns. First, we classified rainfall events into four patterns. During the study period, the main pattern was the advanced rainfall pattern (38% of all rainfall events), whereas the delayed, central, and uniform rainfall patterns had similar frequencies of about 20%. During natural rainfall, rainwater rapidly passed through the top soil layers (10–40 cm) and was accumulated in the bottom layer (50 cm). When a high rainfall pulse occurred, the water storage balance was disturbed, resulting in the drainage of initial soil water from the top layers into the deeper layers. Therefore, the critical function of the top layers and the bottom layers was infiltration and storage, respectively. The source of water stored in the bottom layer was not only rainfall but also the initial soil water in the upper soil layers. Changes in soil temperature at each soil depth were comonitored with SWCv to determine the movement characteristics of soil water under different rainfall patterns. Under the delayed rainfall pattern, preferential flows preferred to occur. Under the other rainfall patterns, matrix flow was the main form of soil water movement. Rainfall amount was a better indicator than rainfall intensity for SWCv in the bottom layer under the delayed rainfall pattern. These results provide insights into the responses of SWCv under different rainfall patterns in northern China.  相似文献   
56.
为了研究近代海相沉积软土的变形特征,本文对珠江三角洲河口地区的全新世海相沉积的软土进行了室内单轴压缩与不同围压下作用下的三轴固结不排水(CU)、不固结不排水(UU)的剪切试验。试验结果表明:原状土和重塑土样的孔隙比随压力的增大而下降,且与加压方式有密切关系,加压幅度越小,土的扰动破坏越小;原状土样固结系数随着压力增加而递减,整体近似符合指数函数分布,重塑土样固结系数随着压力增加逐渐增大,整体近似符合线性函数分布。在相同的固结压力下,原状土样的强度低于重塑土样的强度。土样的应力应变曲线为应变硬化型,且围压对重塑土的影响小于原状土。  相似文献   
57.
矿产资源开发导致了地下水失衡,地下水失衡又给矿产开发造成了极大的安全隐患,近年来,矿产资源开发与地下水环境保护之间的矛盾愈发凸显。通过对内蒙古鲁新井田典型的水文地质条件进行分析研究,分析采矿导致地下水失衡机理,深入剖析矿井开采充水条件及矿山开发对地下水环境的影响,合理提出了促进矿产开发与地下水保护相互协调的对策建议,为实现"采矿保水"协调统一提供了基础地质依据。为类似地区矿产开发过程中遵循自然规律,趋利避害,保障生产安全,保护地下水环境安全,实现资源绿色开发有较好的指导借鉴作用。  相似文献   
58.
退耕还林(草)等生态工程对区域用地结构及生态系统服务功能产生了重要影响。本研究基于RUSLE模型,并辅以遥感监测与GIS空间分析方法,对北方农牧交错带西段2000-2015年退耕状况及其引起的土壤保持功能变化分3个时段(2000-2005年、2005-2010年及2010-2015年)进行了探究。结果表明:北方农牧交错带西段地区2000-2015年耕地面积净减少1663.83 km2,以转为林地、草地、建设用地为主,其中耕地转林、草地净减少面积为1113.64 km2,草地和未利用地是新增耕地的主要来源;15年间土壤保持功能提升显著,退耕还林(草)工程的实施使土壤保持量增加了56.50×104 t,2005-2010年由退耕所带来的土壤保持增加量在3段时期中最高;不同坡度等级的生态退耕引起的土壤保持增加量差别较大,总体随着坡度升高呈下降趋势,但在25°以上的陡坡耕地由退耕还林(草)带来的土壤保持效益又有所升高。研究对于评估北方农牧交错带西段地区实施退耕还林(草)等工程的生态效益具有重要意义,并能为区域生态保护与修复工程的建设规划提供科学依据。  相似文献   
59.
60.
Classification of fine-grained soils is typically conducted using plasticity charts. The typically used plasticity chart proposed by Casagrande was questioned by Polidori proposing different classification criterion in separating clayey and silty soils. Using natural clayey and silty soils sampled from four different coastal sites in Korea, applicability of both Casagrande’s and Polidori’s plasticity charts was evaluated. Classification results of Korean natural soils based on the Casagrande’s and Polidori’s plasticity charts did not match well with those based on the soils’ behavior reported in the previous publication. The disagreement in classification of Korean natural fine-grained soils may result from disregard of considerable silt fraction effect on plastic and liquid limits for Polidori’s chart. Consequently, revised proposal of Polidori’s plasticity chart was tentatively made for further classification of fine-grained soils suitable for Korean natural soils by accounting the effect of silt fraction on soil classification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号